Data Bottleneck Solutions for your Business with Compact CWDM Mux and Demux

Communication networks are vulnerable to data congestion. This limits the end users from accessing certain links including mobile radio towers. The problem has led to management of dedicated links by a large number of wireless carriers through the optical fiber network connection.

Depending on the requirement standards the service provider is expected to comply, some even go to the extent of claiming additional dedicated strands which give access and core meshes to the mobile tower sites.  This trend depletes the number of available fiber strands denying new service providers access to mobile towers.

Thanks to the art of technology which has introduced data bottleneck solution to businesses. The compact CWDM multiplexer allows fiber capacity enhancement without the need to increase the number of fiber strands. This ensures easy communication and connectivity to mobile towers by giving quick access without bugs.

Features

  • High channel isolation
  • Mini size
  • High insertion loss
  • Epoxy-free optical path
  • Large bandwidth

Applications

  • Mobile phone applications
  • WDM network
  • Access network
  • Tele-communication
  • Fiber optic amplifier

How it works

Compact CWDM multiplexer works by either extracting or inaugurating several signals which are broadcasted through different fiber wavelengths to efficient create more different channels. A MUX conglomerates individual light channels to the fiber at the sending end of the data link.

 On arrival, a demultiplexer (DEMUX) applies a similar optical conformation in a reverse direction, propagating via the device. The DEMUX optical filter singles out the incoming wavelengths and pairs each channel separately with fiber. This increases the number of channels transmitted through the fiber.

As the demand for more subscribers continues to grow, the CWDM scales the supply of additional bandwidth by handling bottlenecks without substantial equipment modification. According to the IEEE standards. CWDM is compact and has the capability of withstanding outside plant (OSP) environmental conditions. This allows deployment of uncooled and unheated equipment and cabinets.

Advantages

Saves money

CWDM helps access network operators lower their costs by providing quality connections to their users without the need of investing on more fiber links.

High quality

Compact CWDM is designed using modern technology and complies with IEEE standards making service providers meet the global communication standards. Besides, the device has the capability of withstanding outside the plant environmental conditions giving providers favorable installation conditions.

Reduces data bugs

Networks are prone to bottlenecks. However, the device scales additional bandwidth without the need of substantial modification of the device. This ensures quick access to links despite the increase in the number of subscribers. This has enabled users to enjoy high-speed internet, telephony services, and on-demand videos without limited access.

Before making use of this new technology, access network operators must satisfy the following requirements.

  1. Bandwidth of up to 10Gps for each first-time backhaul link
  2. Facility to storing stable legacy fiber connections of between 1550nm or 1310nm
  3. Typical spans of up to 80km
  4. Uncomplicated operations which are reliable
  5. Wireless carrier segregation bandwidth
  6. Packaged and long-lasting environmental constraints for installation

Know Wave Division Multiplexing & its Working

The world knows that the physical fiber optic cabling can be a lot expensive when it comes implementing for every service separately; but this expense can be made worthy by capacity expansion using a Wave Division Multiplexing also known as WDM.

Wave Division Multiplexing technology was evolved to expand aptitude of networks that a single fiber provides. It helps because a WDM system employs a multiplexer solution at the transmitter that combines several wavelengths in concert; also in this entire process, each carries sundry signal and at the receiver –a de-multiplexer helps in splitting them apart. Both Mux and Demux are passive and thereby require no power supply.

 

Types of WDM

Currently there are many kinds of standardized WDM in existence. The types / kinds of Wave Division Multiplexing are:

  • General WDM (that may include 980/1550 WDM and 1310/1550 WDM).
  • CWDM (such as CWDM Mux and Demux module and CWDM OADM module).
  • DWDM (including 50GHz, 100GHz, 200GHz DWDM mux/demux module and DWDM OADM module).

How WDM works?

The operating principle of WDM is easy and understandable. Wave Division Multiplexing is akin to the prism in the operating principle; as a prism separates white light into seven different colored rays, similarly a WDM system uses a multiplexer at the transmitter to join different signals together, and has a demultiplexer at the receiver end for splitting the signals apart. All you need is a right type of fiber optic cable, and it is possible to have a WDM device that can do both simultaneously, and can act as an optical add / drop multiplexer.

The first WDM systems (which were demonstrated with optical fiber in the early 80s) combined only two signals; however, modern systems can handle up to 160 signals. In short, WDM systems can expand the capacity of the network while accommodating many generations of technology development in optical infrastructure without having to revamp the backbone network; this quality plays in its popularity with telecommunications companies.