40/100GbE MPO FIBER OPTIC CONNECTOR – NORTH AMERICA MARKET FORECAST

According to ElectroniCast, 12-fiber single mode MPO connector consumption value will increase 141% per year through 2016…

ElectroniCast Consultants, a leading market research & technology forecast consultancy addressing the fiber optics communications industry, today announced the release of their annual market forecast of the North American consumption of MPO Fiber Optic Connectors used in 40 and 100GbE communication links.

In 2006, the IEEE 802.3 working group formed the Higher Speed Study Group (HSSG) and found that the growth in bandwidth for network aggregation applications was outpacing the capabilities of networks employing link aggregation with 10 Gigabit Ethernet. (The standard was announced in July 2007 and was ratified on June 17, 2010).

Applications such as video, virtualization (cloud computing), switching/routing and convergence are driving the need for bandwidth expansion. We continue on the path of gradually developing of growth (and change) from 1G to 10G to 40G and 100G. For data center (DC) environments operating at 40GbE or 100GbE, fiber optic cabling is generally recommended because its reach supports a wider range of deployment configurations compared to copper solutions.

The capability to choose increased speed will enable networks to play with the 10GbE resources to the access layer allowing 40/100GbE to handle traffic at the aggregation and core layers.  In this market research report, ElectroniCast Consultants provides their 2011-2016 forecast and analysis of MPO fiber optic connectors used in North American 40/100GbE optical communication networks.

The 10GbE movement into the data centers will continue; however, “future-proofing” is continuing with an accent (40/100G), which is driven by significant broadband expansion demands, especially in regards to network productivity and operating expenses (OPEX costs).

According to ElectroniCast, 12-fiber multimode MPO patchcord dominate the North American (Mexico, Canada and the United States) 40/100GbE MPO connector marketplace in 2012; however, 12-fiber single mode MPO connector consumption value will increase at the fastest pace of 141% per year through 2016.

According to ElectroniCast, 12-fiber multimode MPO connectors currently dominate the North American 40/100GbE MPO connector marketplace, based on consumption value… 

40 and 100 GbE MPO Connector Value

North America Market Share (%) in 2012, by Type

                      mpo patchcord                          
(Source: ElectroniCast Consultants)

DK Photonicswww.dkphotonics.com  specializes in designing and manufacturing of high quality optical passive components mainly for telecommunication, fiber sensor and fiber laser applications,such as PLC Splitter, WDM, FWDM, CWDM, DWDM, OADM, Circulator, Isolator, PM Circulator, PM Isolator, Fused Coupler, Fused WDM, Collimator, Optical Switch and Polarization Maintaining Components, Pump Combiner, High power isolator, Patch Cord and all kinds of connectors.

The Ion exchange process and the Glass choice of the PLC Splitter Chip

Along with development of the optical communication, its good environmental stability and compatibility with fiber, began to widely used optical communication components manufacturing.( Such as self-focusing lens, optical divider, optical amplifier, etc), And extend to the sensing area, (such as: all kinds of biological and chemical sensors , current sensors which is based on fading light waves, etc.)plc splitter

Glass ion-exchange technology has several one hundred years long history, Its earliest used to change the light absorption characteristics of glass, glass coloring,then, the technology is widely used in processing on the surface of the glass surface (such as touch screen add hard processing). Along with development of the optical communication, its good environmental stability and compatibility with fiber, began to widely used optical communication components manufacturing.( Such as self-focusing lens, optical divider, optical amplifier, etc), And extend to the sensing area, (such as: all kinds of biological and chemical sensors , current sensors which is based on fading light waves, etc.)

Current mainstream technology of PLC Splitter chip includes: PECVD technology, flame hydrolysis technology, glass ion exchange technology. Glass principle and technological process of ion exchange technology as shown in figure 1,figure 2. The main process flow flame hydrolysis technology shown in figure 3. The process characteristics of contrast see table 1. From years of use and reliability experiment, the two technologies are used in mass production and the performance is good.The features of PECVD/flame hydrolysis technique are that equipment and raw materials is the existing material, but its process is very complicated, the production cycle is long, the processing tolerance is small; Glass ion exchange technology is characterized by equipment and raw materials need special customized, but its technology is relatively simple, high production efficiency, process tolerance is larger, the chip cost is relatively low.

DK Photonicswww.dkphotonics.com  specializes in designing and manufacturing of high quality optical passive components mainly for telecommunication, fiber sensor and fiber laser applications,such as PLC Splitter, WDM, FWDM, CWDM, DWDM, OADM,Optical Circulator, Isolator, PM Circulator, PM Isolator, Fused Coupler, Fused WDM, Collimator, Optical Switch and Polarization Maintaining Components, Pump Combiner, High power isolator, Patch Cord and all kinds of connectors.

Planar Lightwave Circuit (PLC) Splitters Market Forecast

Telecommunication applications dominate the worldwide PLC splitter marketplace…

ElectroniCast Consultants, a leading market/technology consultancy, today announced the report release of their market forecast of the global consumption of Planar Lightwave Circuit (PLC) splitters used in Fiber Optic Communication Networks.

This ElectroniCast study report details of last year’s consumption and forecasts to the year 2017 of PLC splitters by product-level (level of fabrication), in selected optical communication applications.   There are actually three (3) separate market forecasts:

According to ElectroniCast, the PON, FTTx, and Telecommunication network applications dominate the worldwide PLC splitter compact device consumption value in 2012 with 77% in relative market share; followed by the cable TV segment, the PLC splitters used in Test/Measurement applications and then Harsh Environment (Military/Aerospace, Industrial) and finally Private Enterprise Networks.

In the report, ElectroniCast provides their market data covering the following optical communication applications:

  • Passive Optical Network (PON) / FTTX / Telecommunication Networks
  • Cable TV (CATV)
  • Fiber Optic Test/Measurement
  • Private Enterprise/Data Centers/Local Area Networks (LANs)
  • Harsh Environment (Military, Industrial, Other)

In 2012, the Asia Pacific region (APAC) region leads in the consumption of PLC splitter compact devices with 68% of the worldwide value, followed by the American region and finally the EMEA region.

According to ElectroniCast, the Asia Pacific region dominates the worldwide value of PLC splitters with 68% in 2012…

PLC Splitter Component-Level Compact Devices

2012 – Global Consumption Value Market Share (%), by Region

 (Source: ElectroniCast Consultants)

 PLC

DK Photonicswww.dkphotonics.com  specializes in designing and manufacturing of high quality optical passive components mainly for telecommunication, fiber sensor and fiber laser applications,such as PLC Splitter, WDM, FWDM, CWDM, DWDM, OADM,Optical Circulator, Isolator, PM Circulator, PM Isolator, Fused Coupler, Fused WDM, Collimator, Optical Switch and Polarization Maintaining Components, Pump Combiner, High power isolator, Patch Cord and all kinds of connectors.

SC fiber optic connector basic structure

More than a dozen types of fiber optic connectors have been developed by various manufacturers since 1980s. Although the mechanical design varies a lot among different connector types, the most common elements in a fiber connector can be summarized in the following picture. The example shown is a SC connector which was developed by NTT (Nippon Telegraph and Telephone) of Japan.

SC Connector

A SC Connector Sample

sc connector
SC Connector Structure

Elements in a SC connector

1. The fiber ferrule.

clip_image006_0001

SC Connector Fiber Ferrule

SC connector is built around a long cylindrical 2.5mm diameter ferrule, made of ceramic (zirconia) or metal (stainless alloy). A 124~127um diameter high precision hole is drilled in the center of the ferrule, where stripped bare fiber is inserted through and usually bonded by epoxy or adhesive. The end of the fiber is at the end of the ferrule, where it typically is polished smooth.

2. The connector sub-assembly body.

The ferrule is then assembled in the SC sub-assembly body which has mechanisms to hold the cable and fiber in place. The end of the ferrule protrudes out of the sub-assembly body to mate with another SC connector inside a mating sleeve (also called adapter or coupler).

3. The connector housing

Connector sub-assembly body is then assembled together with the connector housing. Connector housing provides the mechanism for snapping into a mating sleeve (adapter) and hold the connector in place.

4. The fiber cable

Fiber cable and strength member (aramid yarn or Kevlar) are crimped onto the connector sub-assembly body with a crimp eyelet. This provides the strength for mechanical handing of the connector without putting stress on the fiber itself.

5. The stress relief boot.

Stress relief boot covers the joint between connector body and fiber cable and protects fiber cable from mechanical damage. Stress relief boot designs are different for 900um tight buffered fiber and 1.6mm~3mm fiber cable.

Application of optical communication is still broad prospects

Once the Nortel global leader in fiber optic communications during the Internet bubble in 2000, the money in the acquisition of a large number of optical communications research and the production of small and medium enterprises, the industry has been criticized in the subsequent bankruptcy of Nortel. In fact, Nortel grasp of technology trends, the direction is right, unfortunately, Nortel too hasty, global demand for optical communication was not to such an extent.

But now the situation is very different compared with around 2000. The rapid development of mobile Internet and the widespread popularity of smart mobile terminal equipment, being a huge challenge to the global telecommunications network capacity, transmission speed. The era of “data flood peak to optical communication technology has always been known by the transmission bit of new development opportunities and a huge space. Optical communication technology not only did not fall behind, the contrary, the optical communication industry chain, from fiber optic cable system equipment, terminal equipment to optical devices, a critical period in the comprehensive technology upgrade.

The field of optical communication is a noteworthy event, the National Development and Reform Commission recently organizing the preparation of strategic emerging industries key products and services Guidance Catalogue, which in conjunction with the relevant departments, the optical communication technology and product responsibility and selected emerging industries of strategic focus products.

In fiber optics, including FTTx G.657 optical fiber, broadband long-distance high speed large capacity optical fiber transmission with G.656 optical fiber, photonic crystal fiber, rare earth doped fiber (including ytterbium doped fiber, erbium doped fiber and thulium doped fiber, etc.) the laser energy transmission fiber, and has some special properties of new optical fiber, plastic optical fiber, polymer optical fiber is fully finalists. The upgrade of the fiber optic technology, will bring the data transmission capacity, distance, quality leap.

In the field of fiber access equipment, passive optical network (PON), wavelength division multiplexer (WDM),OLT and ONU on the list. Optical transmission equipment, especially the line rate of 40 Gbit/s, 100Gbit/s large capacity (1.6Tb/s and abobe) DWDM equipment, reconfigurable optical bifurcation Multiplexer (ROADM) wavelength division multiplexing system ran cross-connect (OXC) equipment, large-capacity high-speed OTN optical transport network equipment as well as packetized enhanced OTN equipment, PTN packet transport network equipment also impressively. These products are “broadband China” works to promote a powerful weapon; both long-distance backbone network, metropolitan area network or access network even close to the user’s “last mile” of these products will come in handy.

The major products are classified as strategic emerging industries in the field of optical devices, high-speed optical components (active and passive). This is the core and foundation of the field of optical communication technology, device development, the improvement of integration, function enhancement can bring significantly reduce the cost of system equipment and provide a performance boost.

At the same time, the annual OFC / NFOEC (fiber-optic communications exhibition) will be held in late March in California. This event will showcase the latest technology and research progress of the global optical component modules, systems, networks and fiber optic products, represents a new trend of development of optical communication technology.

100G for ultra-high-speed network technology is the current OFC hot one. 2012 100G technology on a global scale backbone network level scale application of 100G optical network applications will rapidly expand with the 100G device further mature. In the same time, the industry has also increased efforts to develop the 100G optical modules, silicon photonics technology pluggable multi-source agreement 100G CFP MSA CPAK optical module has been available. Outside the backbone network, 100G MAN application is the current one of OFC discussion topic.

The rise of cloud computing brings data center construction boom, 100G technology in the data center is a popular data center for high-speed pluggable optical devices is also a hot topic. Experts believe that photonic technology has a key role to play in the large enterprise data centers, but this is only a start, the size of the new cloud computing data center such as a warehouse, with more than 100,000 servers carrying the computing and storage resources, the required network bandwidth than PB level. These data centers only optical communications technology in order to achieve VCSEL (vertical cavity surface emitting lasers) and multi-mode fiber has played an important role, and will continue to introduce new fiber optic communication technology.

Things You Should Know About Filter WDM

Wavelength-division multiplexing (WDM) is overtaking since the leading technology in point-to-point transmission links. One key method is a tunable optical filter. Important features of this type of filter include low insertion loss, narrow bandwidth, high sidelobe suppression, large dynamic range, fast tuning speed, a simple control mechanism, small size, and expense effectiveness. Filter WDM module will depend on Thin Film Filter (TFF) technology. The FWDM is extensively found in EDFA, Raman amplifiers, WDM networks and fiber optics instrumentation. The unit combines or separates light at different wavelengths in the wide wavelength range. Since FWDM series offer minimal insertion loss, low polarization dependence, high isolation and excellent environmental stability, perfect for very fast WDM network systems. It really is traditionally used in optical fiber systems:1310/1550nm, 1480/1550nm, 850/1310nm, 980/1550nm and 1310/1490/1550nm.

FWDM Main Features:

  •  Wide Operating Wavelength Range;
  •  Low Insertion Loss;
  •  Ultra Flat Wide Passband;
  •  High Channel Isolation;
  •  High Stability and reliability;
  •  Epoxy-free on Optical Path.
  •  FWDM Applications:
  •  Testing Instruments;
  •  FTTH Tri-Play System.

WDM is a method of combining multiple signals on lasers at various infared (IR) wavelengths for transmission along fiber optic media. Each laser is modulated by an impartial pair of signals. Wavelength-sensitive filters, the IR analog of visible-light color filters, are employed on the receiving end.

WDM is comparable to frequency-division multiplexing (FDM). But rather than going on at radio frequencies (RF), WDM is done inside the IR element of the electromagnetic (EM) spectrum. Each IR channel carries several RF signals combined by using FDM or time-division multiplexing (TDM). Each multiplexed IR channel is separated, or demultiplexed, in the original signals with the destination.

The usage of WDM can multiply the effective bandwidth of an fiber optic communications system with a large factor. However its cost should be compared to the choice of utilizing multiple fibers bundled in to a cable. A fiber optic repeater device referred to as erbium amplifier plans to make WDM a cost-effective long-term treatment for the bandwidth exhaustion problem.

DK Photonics offers a wide selection of WDM/CWDM/DWDM devices, like CWDM Mux/Demux, CWDM OADM, DWDM Mux/Demux, DWDM OADM, Filter WDM and so on. DK Photonics 1310/1490/1550 WDM devices based on thin-film filter technology are design to address the precise requirements from the FTTP market. Strong coating and passive device packaging capabilities feature these WDMs with excellent optical performance, good reliability and ultra-compact size.

The Application of Fiber Optic Connector

fiber optic connectorFiber Optic Connector has been widely used in fiber optic transmission lines, fiber optic patch panels and fiber-optic test instruments and meters. The Fiber Connector is one of the most essential components for fiber optic communication. It mate or connect with optical devices, modules, and fibers. Fiber connector is also the key part used in fiber Patch cord and fiber Pigtail.

In fiber optics design, when the system is capable of normal operation, if you are trying to build the local network or LAN in your home then you most probably know you will need a fiber patch cable and may be a hub or we achieved a very good results. Choosing a good fiber optic modem depends on a few factors, including availability. We need to consider not only some unexpected problems appear in the system design, but also expect the system to achieve the effect of normal operation. During the process of system design, we have to consider the worst case appear and related plans, is looking forward to improved operating results. In system design, security, stability and system access request the end of the fiber is smooth, neat. The connection between the clients must be accurate, micron accuracy or millionths of a meter. The diameter of the commonly used multi-mode fiber is from 50 to 62.5 microns, while the diameter of the single-mode fiber is only 8-9 microns. This size of the diameter of a human hair can (17-180 microns) are compared in diameter, and we can make sure that every trace of error can bring catastrophic losses.

With the expansion of technology development and application of fiber optic patch cables are also achieving rapid development. The types of fiber optic connectors on the market are probably 12 or more, each of which was launched to the specific needs, of course, came to meet, there are some technical limitations. The trend in the market is developing at a moderate price, compact plug-mode and all can support the requirements of the new transmission distribution system. As users expect that the ongoing development of the telecommunications industry also supports the large-scale application of the optical fiber, in large part due to the rapid growth of demand in the way of communication and entertainment services on the fiber link.

The fiber optic connection is very stringent accuracy of the equipment, the species of fiber patch cords are many kinds. So the connector must be very clean. Fiber optic connectors and accessories are usually mounted on a series of house, a fingerprint or external dust seriously affect the performance of the connector, and even the loss of communication. Therefore, the connector can be stored in clean protective sleeve without connection. Then we should also put fiber optic connector.

Fiber optic connectors according to the different transmission media can be divided into common silicon-based optical fiber single-mode and multimode connectors, as well as other issues such as plastic and as the transmission medium of optical fiber connector; connector structure can be divided into: FC SC, ST, LC, D4, DIN, MU, the MT and so on in various forms. The optical interface is the physical interface used to connect fiber optic cable. FiberStore as the main professional fiber optic products manufacturer in china offer a various kinds of fiber optic connectors, FC Connectors, LC Connectors, SC Connectors, ST Connectors. You can buy fiber optic connection products on our store with your confidence. All of fiber optics supplies with high quality but low price.